Четыре ведущих колеса – как это работает, какая от этого польза и в каких моделях автомобилей это можно увидеть? Полноприводные трансмиссии У какой машины все 4 колеса ведущие

Производители автомобилей с большим удовольствием пишут в каталогах о возможности приобретения различных моделей автомобилей с полным приводом на все четыре колеса (4 х 4). К сожалению, это определение часто скрывает системы, которые работают по-разному. Итак, мы предлагаем узнать, что на самом деле имеет в виду продавец, когда говорит «4 ведущих колеса».

4 ведущих колеса, это…

Первый вид полного привода на четыре колеса (4 x 4) - постоянный привод всех четырех ведущих колес, когда крутящий момент всегда распределяется на две оси. Такое распределение обеспечивается центральным механизмом распределения. Постоянный полный привод на 4 колеса имеют, например, следующие модели: Audi Allroad, Mitsubishi Lancer Evolution и Pajero, Toyota Land Cruiser или Land Rover Discovery.

Постоянный полный привод на 4 колеса далее можно разделить на симметричный и асимметричный. Асимметричный привод есть, например, в модели Land Rover Defender, в которой крутящий момент распределяется по двум осям в равных частях. При асимметричном варианте крутящий момент передается на оси в зависимости от необходимости – такое распределение обеспечивается механизмом распределения полуосей или мультиплексным сцеплением.

Другой вид полного привода (4 x 4) - подключаемый механически привод с 4 ведущими колесами. В этом случае речь идет о явлении, когда одна ось постоянно является ведущей, а вторая ось может быть подключена путем включения соответствующего рычага или нажатия соответствующей кнопки. Подключаемый полный привод можно увидеть, например, в моделях Suzuki Jimmy, Jeep Wrangler или Nissan Patrol, у которых имеется постоянный привод на заднюю ось, а переднюю ось можно подключить самому. Однако, рекомендуется использовать эту функцию только в условиях бездорожья. Если движение осуществляется при обычных условиях, все 4 ведущих колеса будут больше мешать, чем помогать.

Третий вид полного привода (4 x 4) – это автоматически подключаемый привод. Такое решение представляет собой промежуточный вариант между постоянным полным приводом на 4 колеса и подключаемым механически приводом. Такой привод мы увидим в следующих автомобилях: Mitsubishi Outlander, Toyota RAV4, Volvo AWD, Suzuki SX4, Audi A3 или BMW X5. Здесь постоянно и напрямую осуществляется привод на одну ось, а благодаря мультиплексному сцеплению при необходимости также можно автоматически переместить привод на другую ось.

Преимущества и недостатки полного привода 4 x 4

Это правда, что в целом, автомобиль с четырьмя ведущими колесами более универсален, чем транспортные средства с одной ведущей осью, как с точки зрения качества покрытия, так и погодных условий. При наличии полного привода (4 x 4) вы, вероятно, сможете проехать дальше, чем без него. Однако это не означает, что мы достигнем любой цели и в любое время. Конечно, полный привод 4 x 4 обеспечивает лучшее сцепление с поверхностью дороги, чем одноосный привод, но если автомобиль станет неуправляемым и начнет скользить, ведь это возможно, справиться с сложившейся ситуацией будет очень сложно. Потому, что в автомобилях с четырьмя ведущими колесами может начать скользить задняя часть, а затем станет неуправляемой и передняя.

Не удастся скрыть и тот факт, что полноприводные автомобили типа 4 х 4 стоят значительно дороже, чем автомобили с одной ведущей осью. Содержание таких автомобилей тоже обходится дороже. Вам придется чаще заезжать на автозаправочные станции, особенно если ваш автомобиль имеет постоянный полный привод со всеми ведущими колесами.

Благодаря этой системе ваш автомобиль становится тяжелее, соответственно и расход топлива будет выше. Вы также будете платить больше и за возможные ремонты. У вас будет сложная система, в которой, как и в любой другой части автомобиля, рано или поздно возникнет неисправность.

Поэтому автомобиль с двумя ведущими осями нужно покупать не по экономическим причинам. Такое транспортное средство, скорее всего, пригодится тем людям, которые часто ездят по труднопроходимым дорогам, например, живут или работают в горах или лесах, либо туристам, регулярно посещающим высокорасположенные горнолыжные курорты.

На рынке предлагаются полноприводные автомобили (4 x 4)

И, наконец, давайте еще посмотрим, какой у нас есть выбор новых полноприводных автомобилей (4 x 4). Находим один из самых популярных литовских сайтов объявлений. Выбираем транспортные средства со всеми четырьмя ведущими колесами:

  • Audi A5, A6, A7, Q2, Q3, Q5 и Q7;
  • BMW, 4, 5 и 7 серии, X1, X3, X4 и X5;
  • Mercedes C-, E- и S-класса, а также модели: CLA, GLC, GLE и GLS;
  • Volkswagen Amarok, Golf, Multivan, Tiguan, Touareg.
  • Subaru Impreza, Forester, Outback и XV;
  • Mini Clubman, Cooper S, Countryman;
  • Jeep Grand Cherokee.

Если мы изменим параметры фильтра так, чтобы нам показали автомобили с автоматически подключаемой второй осью, мы увидим следующие модели: BMW, Audi, Volvo, Volkswagen, Mercedes, Porsche и Honda. Меньше всего предложений о продаже автомобилей с подключаемой механически второй осью. После установки такого запроса мы увидим на экране Nissan, Mitsubishi, Toyota, Suzuki, Jeep, Isuzu и Hyundai.

В общем, есть из чего выбрать. Конечно, на рынке подержанных автомобилей нет недостатка в интересных моделях. Но помните, что лучше избегать подержанных полноприводных автомобилей (4 x 4), предлагаемых за несколько тысяч злотых. Низкая цена обычно свидетельствует о том, что вскоре после покупки много денег придется оставить в автосервисе.

В 1961 на старт GP Великобритании вышел необычный «болид» под названием Ferguson P99. От соперников он отличался … 4-я ведущими колесами: такого в чемпионатах мира по Формуле 1 не видели давно . Надо сказать, сколько-то заметных успехов пионерный P99 не добился; незрелая конструкция. Однако идея носилась в воздухе, и в 1965 объявился полноприводный Jensen FF – «штучный» британский GT с мощной крайслеровской «восьмеркой» под капотом. Трансмиссия 4WD у него по сути повторяла конструкцию незадачливого Ferguson P99, но автомобиль получился ничего себе. Он и положил начало интересному направлению в автомобилестроении: создание быстроходных легковушек с полноприводной трансмиссией.


Зачем 4WD?

И к чему, спрашивается, скоростным автомобилям 4 ведущих колеса? Со «вседорожниками» понятно, а нуждается ли в полноприводной трансмиссии Jensen FF?

Еще как нуждается, и британский инженер Henry Ferguson рано осознал преимущества полного привода. Г.Фергюсон, не только квалифицированный технарь, но и крупный промышленник , располагал немалыми возможностями для реализации своих замыслов. Одним из воплощений его замыслов и стал гоночный Ferguson P99.

И все-таки зачем 4WD? Зачем? Прежде всего - безопасность движения по мокрым и скользким дорогам. Почти то же самое, что с торможением, только наоборот. Для малоопытного водителя опасна пробуксовка ведущих колес под «газом»: так называемый «силовой» занос при проскальзывании задних - или снос, когда буксуют передние. Тогда как вероятность пробуксовки при 4-х ведущих колесах гораздо ниже; в том-то и состоял замысел Г.Фергюсона.

Суть дела проясняет так называемая «круговая диаграмма» Камма : окружность (см. рис.) очерчивает пределы сцепления покрышки в пятне контакта с ходовой поверхностью. Скажем, предельное усилие, какое резина способна передать (за счет трения покоя) на сухой дороге – 4 тыс. ньютонов. В любом направлении: вперед (ускорение), назад (торможение), в строну (центробежная сила в вираже). Без разницы, но не больше 4 тыс. Н! Сила трения-то в пятне контакта одна – на все про все. И если при интенсивном разгоне на (задние) ведущие колеса падает тяговое усилие под 8 тыс. Н, то оно «выбирает» силу сцепления покрышек с дорогой практически целиком. На боковые усилия ничего не остается: автомобиль ерзает «кормой» - опасный для малоопытного водителя «силовой» занос.


А что касается спортивно-гоночных автомобилей, то о них особый разговор. Тут главное – сцепной вес: доля веса «болида», которая приходится на ведущие колеса. Скажем, 58% на заднюю ведущую ось у центральномоторной «формулы». Неплохо, но далеко не 100%. А от сцепного веса зависит предельное ускорение автомобиля со старта: задние колеса буксуют от избытка тяги, и «болид» разгоняется не так быстро, как позволяет двигатель. Тогда как полный привод дает 100% сцепного веса – по построению.

Вот (по меньшей мере) две причины, которые оправдывают применение непростых и недешевых трансмиссий 4WD. Разве мало? Короче говоря, тягу двигателя лучше распределять не на два, а на все 4 колеса – ради безопасности и динамики. И с середины 60-х процесс пошел: появился скоростной Jensen FF с полноприводной трансмиссией по «формуле Фергюсона». Какая еще формула? Разве схема не ясна: трансмиссионные валы передают крутящий момент на обе ведущие оси – и порядок. Зачем усложнять?

К сожалению, просто только на первый взгляд; в реальности трансмиссия 4WD не обойдется без таких малоприятных вещей, как дифференциалы. Причем двух маловато; нужны все 3: пара по ведущим осям – плюс центральный (межосевой) дифер. И тут возникает острая зубная боль…

Капризы дифера

Сложно представить автомобиль без всякого дифференциала: например, движение в повороте. Все 4 колеса катятся по разным радиусам кривой и проходят неодинаковый путь. Если не позволить ведущим колесам крутиться вразнобой, тому или иному из них придется пробуксовывать (а то и обоим); машина станет трудно управляемой. Вспомните, как ведет себя «вседорожник» при жесткой блокировке межосевого дифера... .


Ладно, раз уж без них никак, ставим 3 дифференциала. Порядок? Боюсь, еще нет… Тут нужно разобраться, что такое дифер? Делитель, один из простейших механизмов – где-то после рычага и ворота: он делит крутящий момент (но не мощность!) по двум выходным валам в заданной пропорции – и позволяет им крутиться с неодинаковыми оборотами. Когда дифференциал делит входной момент пополам, его так и называют – симметричный . Однако их делают и несимметричными : 60/40%, 70/30% – как скажете. Все зависит от количества зубьев у ведомых шестерен – одинаковое или разное. Но когда дифер собран, его свойства уже не меняются – 50 на 50 (или как он там исполнен).

Несложный шестеренный механизм, а зубчатые колеса делают разные. И дифференциалы тоже – конические (самые обычные), цилиндрические, червячные... Соответственно, но идея одна и та же. Гениальная простота: монтируем в ведущий мост дифер (симметричный или нет) – вперед и с песней! На прямой колеса по бортам крутятся с одинаковой частотой, а в повороте дифференциал позволяет внешнему колесу забегать вперед (или отставать внутреннему). Причем тяга постоянно транслируется на оба ведущие колеса; разве не гармония? .


И в самом деле – до тех пор, пока одно из ведущих колес не подскочит на неровности или не попадет на скользкую поверхность. Видели, как одно из ведущих колес на злу головушку шлифует лед, тогда как другое остается неподвижным? Здесь весь характер дифференциала; уж так он устроен. Дифер не просто делит входной крутящий момент, а (если он симметричный) выравнивает моменты на выходных валах. И когда – не дай Бог! – сопротивления качению на одном из колес падает практически до 0 (вывесили на домкрате), он добросовестно сбалансирует моменты на обоих. То есть, оставит без тяги также и то колесо, которое надежно опирается на ходовую поверхность. Вся мощность (ее-то дифференциал не делит) улетает в бешеную раскрутку «холостого» колеса; вас устраивает?

Свободный дифференциал доставляет немало неприятностей, даже когда он один-единственный – в (заднем или переднем) ведущем мосту. А когда их 3 – как в полноприводной трансмиссии! И каждый в любой момент готов подложить свинью: стоит одному из 4-х колес потерять сцепление с дорогой, как мощность тут же уйдет именно на него. То есть, трансмиссия 4WD с центральным дифером (без блокировки тем или иным способом) практически неработоспособна: свободные дифференциалы беспрерывно гоняют то одно, то другое из колес. А то и пару (по борту) одновременно – вхолостую.

Причем дело не только в потере тяги; колесо подскочило в воздух – и тут же бешено раскручивается всей мощью мотора. При приземлении неизбежны его резкое торможение и пробуксовка – с нарушением стабильности машины на траектории, и так чуть не каждую секунду. И т.п., однако попробуйте обойтись без центрального дифера: автомобиль становится трудно управляемым в виражах. Коллизия.

Формула Фергюсона

Нехитрая мораль: трансмиссию 4WD невозможно строить со свободными дифференциалами; она окажется неработоспособной. Свободу диферов (во всяком случае центрального) необходимо ограничивать. Но с умом! Так сказать, толерантно: в каких-то (нешироких) пределах межосевой дифференциал пусть остается свободным – и не ухудшает управляемость быстроходного автомобиля. И лишь когда дифер грозит проявить свой зловредный норов, приводить его в чувство – посредством «мягкой» блокировки.

То есть, центральный дифференциал дополняется своеобразным устройством, которое деликатно (!) ограничивает его свободу; в том-то и состоит «формула Фергюсона». Так, и Ferguson P99, и Jensen FF оснащались особой «раздаткой» – под названием Duolok. Довольно замысловатая конструкция с несимметричным (планетарным) дифером: распределение крутящего момента по осям – примерно 37/63%. Однако главное в другом: две (шариковые) обгонные муфты. Они не встревают до тех пор, пока разница в оборотах переднего и заднего трансмиссионных валов не превысит заданного порога. А тогда забегающий вал «прихватывается» своей обгонной муфтой: «мягкая» толерантная блокировка – вплоть до 100%..


1. входной вал;
2. каретка обгонных муфт;
3. «звездочки» цепной передачи;
4. планетарный межосевой дифференциал;
. выходной вал к заднему мосту;
6. цепная передача;
7. выходной вал к переднему мосту;
8 и 9. обгонные муфты;
10. датчик антиблокировки Maxaret.

И ведь работала «раздатка» Duolok! Во всяком случае в трансмиссии Jensen FF: высокодинамичный автомобиль с мощной «восьмеркой» прекрасно вел себя на скользкой дороге. А к сезону 1969 команды Формулы 1 дружно подготовили каждая по полноприводному «болиду». Lotus 63, Matra MS84, McLaren M9A… Все та же «формула Фергюсона»: межосевой дифференциал с толерантной блокировкой. Увы, опять без всякого успеха: «активная» аэродинамика («антикрылья») давала не меньший эффект – сравнительно простыми средствами. А в начале 70-х трансмиссии 4WD в Формуле 1 и вовсе запретили; вопрос ушел из повестки дня. .


1. двигатель;
2. АКПП;
3. «раздатка» Duolok;
4. передний трансмиссионный вал;
5. задний мост;
6. передняя главная передача.

Другое дело ралли-спорт: к концу 70-х самые крутые «болиды» WRC обзавелись полноприводными трансмиссиями – по «формуле Фергюсона». На скоростных участках их преимущество оказалось столь велико, что моноприводные конструкции скоро выбыли из конкуренции. В ралли-спорте наступила эпоха 4WD, которая продолжается и по сей день. Идея Г.Фергюсона (он ушел еще в 1960) оправдала себя на все 100. .


Фото AP, Audi, Lancia.


В I половине 30-х на гоночные трассы выходил нескладный полноприводный Bugatti 53. Без пользы.

Транснациональная корпорация Massey Ferguson: тракторы и дорожно-строительные машины.

Wunibald Kamm, немецкий автомобильный инженер и специалист по аэродинамике (I половина прошлого века).

Дифференциал делит крутящий момент в заданном соотношении – и только дифференциал! Когда говорят, что при жестком подключении 2-го моста тяга распределяется в пропорции 50/50, - школьная ошибка. Ничего подобного.

Мощность равна, как известно, произведению момента на обороты вала. Поэтому, если один из валов остановлен, то мощность на нем, по определению, равна 0 (хотя крутящий момент вполне приличный).

Совокупность деталей, подводящих крутящий момент непосред­ственно к ведущим колесам, называют приводом ведущих колес .

Передача крутящего момента от дифференциала к ведущим коле­сам в зависимости от типа подвески колес осуществляется с помощью цельных валов полуосей или карданных передач. Полуоси применяются в приводе ведущих неуправляемых колес; карданные передачи с простыми карданными шарнирами - в приводе неуправляемых колес с подрессоренной главной передачей.

Карданные передачи с синхронными шарнирами (равных угловых скоростей) используются в приводе управляемых колес. Привод к ведущим колесам должен обеспечить отсутствие пульсации момента при полном ходе колеса, допускаемой подвеской автомобиля.

Полуоси ведущего моста с жесткой балкой (рис. 15) в зависи­мости от испытываемых полуосью нагрузок условно делятся на полу­разгруженные (рис. 15-а ), на три четверти разгруженные (рис. 15-б ) и полностью разгруженные (рис. 15-в ).

Полуразгруженная полуось (рис. 15-а ) имеет внешнюю опору, установлен­ную внутри балки 5 моста (рис. 16). При этом со стороны колеса полуось воспринимает все усилия и моменты, действующие от до­рог. Полуразгруженные полуоси имеют наиболее простую конструк­цию и поэтому широко применяются на легковых автомобилях. Обычно в таких конструкциях отсутствует ступица колеса; ее за­меняет фланец полуоси, к которому непосредственно прикреплены диск колеса и тормозной барабан.

Рис.15. Схемы загруженности полуосей ведущих неуправляемых мостов:

а – полуразгруженная полуось; б - полуось разгружена на три четверти; в – полностью разгруженная полуось.

Наружный конец полуоси опирается на шариковые (рис. 16-а ) или роликовые конические (рис. 16-б ) подшипники, которые передают как нормальные, так в осевые усилия. При использовании шариковых подшипников для передачи осевой силы одного из направлений на полуось запрессовывается запорное кольцо 6 (рис. 16-а ).

На три четверти разгруженная полуось (рис. 15-б ) имеет внеш­нюю опору между ступицей колеса и балкой моста (рис. 17). При этом изгибающие моменты от реакций тангенциальной тяговой силы Р р или тормозной силы Р τ и от боковой (осевой) силы Y , возникающей, например, при повороте автомобиля, (см. рис. 15-б ) воспринимаются одновременно и полуосью, и балкой моста через подшипник.

Рис.16. Соединение полуразгруженной полуоси с колесом:

1 – полуось; 2 – ступица колеса; 3 – подшипник; 4 – конусное крепление ступицы колеса; 5 – балка ведущего моста; 6 – запорное кольцо.

Доля нагрузок, приходящихся на полуось, зависит от конструкции подшипника и его жесткости.

Рис.17. Соединение разгруженной на три четверти полуоси с колесом:

1 – полуось; 2 – подшипник; 3 – балка ведущего моста; 4 – фланец полуоси.

Боковая (осевая) сила Y загружает подшипник моментом, который вызывает перекос подшипника и резко снижает срок его службы. Вследствие указан­ных недостатков полуоси такого типа имеют ограниченное приме­нение.

Рис.18. Соединение полностью разгруженной полуоси со ступицей колеса:

1 – полуось; 2 – балка ведущего моста; 3 – ступица; 4 – подшипник; 5 – крепление ступицы колеса.

Полностью разгруженная полуось имеет внешнюю опору со ступицей колеса, установленной на разнесенных двух роликовых или радиально-упорных шариковых подшипниках (рис. 15-в и 18).

Полуось теоретически нагружается только крутящим моментом, передавае­мым от дифференциала к колесам. Однако вследствие упругой де­формации балки моста, технологической несоосности ступицы ко­леса и шестерни полуоси дифференциала, неперпендикулярности плоскости фланца к оси полуоси возможно возник­новение деформации изгиба полуоси. Возникающее при этом напряже­ние изгиба составляет 5-70 МПа .

На рис. 19 приведена конструкция привода к управляемым колесам лег­кового автомобиля с полуразгруженной полуосью и кулачковым шарниром. Получили распростране­ние приводы к управляе­мым колесам неразрез­ного моста, в котором полуось раз­груженного типа имеет шарниры равных угловых скоростей.

Рис.19. Привод к ведущим управляемым колесам легкового автомобиля:

1 – ступица колеса; 2 – подшипник; 3 – полуось; 4 – пружина; 5 – шарнир равных угловых скоростей.

Полуоси воспринимают значительные переменные нагрузки. Обычно их выполняют с утолщениями по концам, чтобы внутренний диаметр шлицев был не меньше основного диаметра полуоси. Для снижения концентрации напряжений стремятся увеличить радиусы переходов от одного диаметра к другому, уменьшить глубину шли­цев, что вызывает необходимость увеличения их числа (от 10 для легковых автомобилей и до 18 - для грузовых). Значительно уменьшается концентрация напряжений при переходе на эвольвентные шлицы.

Детали привода из раздаточной коробки Volkswagen Touareg


В наше время трудно застать кого-то врасплох вопросом про «полноприводный автомобиль». Вам тут же укажут на проезжающий мимо внедорожник, благо подобной техники на улицах наших городов более чем достаточно. А разбирающиеся еще добавят, что полноприводными бывают и обычные легковые автомобили (чаще всего упоминаются Audi и Subaru). И что полный привод может быть «постоянным» и «подключаемым».

Вопрос «А зачем?» встречает, как правило, один ответ: «Для лучшей проходимости». Впрочем, постоянные читатели автомобильной прессы еще осведомлены о «лучшей устойчивости на скользкой дороге».

Все это, как говорится, верно, но не совсем. Поэтому мы сегодня попытаемся привести в систему наши знания о приводе на все колеса. Точнее, начнем приводить, ибо тема эта, как и весь современный автомобиль, практически неисчерпаема.

Делить на большее

Что движет автомобиль? Двигатель вращает колеса, а они уже отталкиваются от дороги — так же, как мы, когда делаем очередной шаг вперед. В том месте, где шина соприкасается с дорогой (назовем его «пятно контакта»), создаваемый двигателем крутящий момент превращается в силу тяги колеса. Однако если сила тяги окажется больше, чем сила сцепления шины с дорогой, колесо будет проскальзывать — буксовать.

Понятно, что если у автомобиля два ведущих колеса, то все усилие, создаваемое двигателем, распределяется между двумя пятнами контакта.

А если четыре? Тогда между четырьмя. Чем больше ведущих колес, тем меньшая сила тяги приходится на каждое колесо, на каждое пятно контакта. А это значит, что при том же сцеплении шин с дорогой мы можем развить гораздо большую суммарную силу тяги, то есть быстрей разгоняться, въезжать на более крутые подъемы, буксировать более тяжелый прицеп. Или наоборот — при той же (или даже большей) силе тяги сможем уверенно передвигаться по гораздо более скользкому покрытию.

В общем-то, простая физика. И понятно, что дорожному автомобилю все это может пригодиться ничуть не меньше, чем машине высокой проходимости.

Устойчивость имеет ко всему этому самое непосредственное отношение. Ведь благодаря сцеплению шин с дорогой автомобиль не только разгоняется, но и останавливается, меняет направление движения, да и вообще стоит на дороге, а не валяется в кювете после первого же поворота. Однако чем большая продольная сила, действует в пятне контакта, тем меньшей поперечной силы будет достаточно, чтобы сорвать колесо в боковое скольжение. А уж буксующее колесо боковую нагрузку практически не воспринимает.

Ну и, конечно, можно представить себе немало различных ситуаций, когда практическая польза полного привода проявляется уже просто в том, что любое колесо является ведущим. Например, несколько колес вдруг оказались в условиях очень плохого сцепления с грунтом — на снегу, льду, в грязи. Или вообще «болтаются» в воздухе (и такое бывает при движении по пересеченной местности).

В подобном случае мы можем рассчитывать только на то, что колеса, которые сохраняют сцепление с опорной поверхностью, тоже являются ведущими.

Однако за преимущества полного привода приходится платить — усложнением (и удорожанием) конструкции, увеличением массы машины (а значит, и расхода топлива), уменьшением полезного пространства, отводящегося для пассажиров и груза. Ведь чтобы колеса стали ведущими, к ним нужно подвести крутящий момент от двигателя. А значит, появятся дополнительные агрегаты — раздаточные коробки (как минимум одна), главные передачи с дифференциалами (по одной на каждую ведущую ось), приводные валы. И поэтому на протяжении большей части XX столетия привод на все колеса получал широкое распространение в основном только там, где обойтись без него было просто невозможно, — в машинах высокой проходимости.

Но в большинстве из них полный привод использовался лишь время от времени — только в тяжелых условиях. Все остальное время бездействующие агрегаты возились с собой как бесполезный груз, лишь ухудшающий динамику автомобиля и увеличивающий расход топлива. Почему?

Его величество дифференциал

Еще на заре эпохи самодвижущихся экипажей, когда ведущие колеса закреплялись на общей жесткой оси, конструкторы столкнулись с тем, что крутой поворот становился для автомобиля непреодолимым препятствием. Ведь при прохождении поворота «наружное» колесо проходит больший путь, чем «внутреннее» (за то же самое время), а значит, должно вращаться с большей скоростью. Либо должно пробуксовывать внутреннее колесо, что маломощные первые двигатели обеспечить не могли — и попросту глохли. А если и хватало мощности двигателя, то автомобиль в поворотах постоянно заносило, очень быстро изнашивались шины, из-за возникающих нагрузок ломались оси. И потому довольно быстро единая ось ведущих колес была заменена двумя полуосями, между которыми появился дифференциал, планетарный механизм, обеспечивающий правое и левое колесо равным крутящим моментом, но позволяющий им вращаться с разной скоростью.

Но дело-то в том, что передние и задние колеса при повороте тоже проходят разные расстояния.

Более того, в реальных условиях движения они могут проходить разные расстояния и на прямой, ведь на дорогах встречаются неровности. А это значит, что если мы делаем автомобиль полноприводным, то в нем должен быть предусмотрен еще один дифференциал — между передней и задней осями. Иначе шины будут быстро изнашиваться, а нагрузки, возникшие в приводе, приведут его в негодность.

Конечно, межосевой дифференциал — это усложнение и удорожание конструкции и, опять же, лишняя масса. И без него, в принципе, можно обойтись, но при одном условии: приводом на все колеса мы будем пользоваться только на достаточно скользких покрытиях и при небольших скоростях, когда серьезных неприятностей для шин и привода не возникает. А на твердой дороге придется оставлять лишь одну ведущую ось.

В начале и середине прошлого века такой подход устраивал. Схема полного привода без межосевого дифференциала (с жесткой связью в раздаточной коробке и отключением одного из ведущих мостов) была популярна на внедорожной технике вплоть до конца XX века. Собственно, она дожила и до наших дней, модернизировавшись насколько возможно.

Теперь для подключения «дополнительного» ведущего моста не надо останавливаться (в англоязычной литературе это называется «shiftonthefly»). Сейчас привод с подключаемым передним мостом используется в Isuzu Trooper с механической коробкой передач, в Jeep Wrangler, в Mitsubishi Pajero Sport и многих других автомобилях.

Всегда — полный!

Но одно дело — «просто внедорожники». Их потребителей вполне устраивали основные преимущества схемы с отключаемым мостом — относительная простота и, соответственно, дешевизна, а вопросы скоростного передвижения по асфальту их волновали мало. Совсем другое — когда полноприводный автомобиль не «покоритель лугов и пустынь», а транспортное средство для повседневного использования (причем большей частью по нормальным дорогам). В этой ситуации на первый план выходят недостатки. Во‑первых, невозможность постоянного использования преимуществ полного привода (ведь при движении по твердым покрытиям ведущей остается только одна ось). Во‑вторых, повышенные требования к квалификации водителя: он должен правильно оценивать обстановку и принимать решение, включать дополнительный мост или не включать. А ошибки чреваты неприятными последствиями: превращение автомобиля в полноприводный мгновенно меняет не только проходимость, но и управляемость.

Так что в последнее время гораздо чаще находит применение постоянный полный привод с межосевым дифференциалом. Такая схема у большинства полноприводных легковых автомобилей и последних моделей внедорожников (все Audi quattro, кроме A3; все BMW iX, а также X5; Hyundai Santa Fe; Jaguar XType; все Mercedes-Benz 4matic, M и G-класса; Mitsubishi Pajero — в общем, полный список может занять весь выделенный для статьи объем).

Однако и «дифференциальный» привод не лишен недостатков.

Во-первых, на скользком покрытии дифференциал вполне может подвести. Вам приходилось наблюдать со стороны за автомобилем, забуксовавшим в снегу или жидкой грязи? Тогда вы должны были заметить: в то время как буксующее колесо бешено вращается, другое практически не делает попыток сдвинуться с места. Виноват в этом дифференциал. И точно так же будет вести себя межосевой дифференциал, когда колеса одной из осей окажутся на скользкой поверхности. Чтобы этого не происходило, полноприводные автомобили (особенно высокой проходимости) приходится оборудовать устройствами блокировки дифференциалов. Понятно, что система привода не становится от этого проще и дешевле.

Кроме того, раздаточная коробка и дополнительные приводные валы по‑прежнему утяжеляют машину и занимают много места. И если для больших автомобилей с мощными двигателями все это не так уж и существенно, то у легковых, особенно компактных, серьезно страдают динамика, экономичность и вместимость.

По мере необходимости

Не без «помощи» компактных легковых автомобилей родилась еще одна концепция полного привода, используемая на многих современных машинах. В западной литературе она называется «torqueondemand» (или просто «on demand») — «момент по необходимости».

Идея в том, чтобы к простому (без межосевого дифференциала) приводу с отключаемым мостом добавить некое автоматическое устройство, подключающее его в случае необходимости (скажем, при пробуксовке «основных» ведущих колес). А еще лучше — передающее на «дополнительный» мост ровно столько крутящего момента, сколько необходимо.

Конечно, такая схема уступает постоянному полному приводу, зато конструктивно проще, а главное, очень удобна для того, чтобы сделать полноприводным небольшой автомобиль.

Ведь когда двигатель впереди и «основные» ведущие колеса передние, можно даже отказаться от отдельной раздаточной коробки — достаточно сделать простой отбор мощности к заднему мосту, а передним установить то самое автоматическое устройство. Такой привод получается компактным и довольно легким, а потому очень популярен среди легковых моделей (Audi A3; Volvo AWD и XC; Volkswagen Golf 4Motion и т. д.), а также моделей «промежуточных» классов (Ford Maverick, Honda CRV; Nissan X-Trail; Volvo XC 90 и др.).

Первые системы «on demand» создавались на основе муфты вязкостного трения (до последнего времени еще сохранялась на полноприводных Volvo V70, до сих пор устанавливается на Chrysler Voyager AWD, Land Rover Freelander и некоторые Mitsubishi Pajero Pinin). Позже было предложено еще несколько относительно простых гидравлико-механических устройств, работающих без какого-либо вмешательства извне. Их конструкции и принципам действия мы предполагаем посвятить отдельные материалы.

Но у всех простых муфт с «внутренним автоматизмом» есть существенные недостатки. Во‑первых, они срабатывают уже по факту пробуксовки, что может оказаться уже поздновато. Во‑вторых, их характеристика (скорость срабатывания, зависимость передаваемого момента от скорости буксования и т. п.) определяется конструкцией и не может быть изменена без разборки (которая, зачастую, возможна лишь в заводских условиях). А это означает, что об адаптации к конкретным условиям движения говорить уже не приходится.

И поскольку микропроцессорная техника в последние годы значительно подешевела, в системах «on demand» все чаще используют устройства с компьютерным управлением. Они регулируют момент, передаваемый на «дополнительный» мост уже не только в зависимости от текущей ситуации, но и на основе прогноза ее развития. Возможности управляемых электроникой систем очень широки. И потому они все чаще находят применение вместо межосевого дифференциала в раздаточных коробках больших мощных моделей (Chevrolet Tahoe и TrailBlazer; Infiniti FX и др.).

Skoda - одна из немногих марок, которая предлагает систему полного привода на половину своих моделей, исключая совсем уж компактные. Само собой, такой энтузиазм чехам достался по наследству от материнского концерна Volkswagen, как, собственно, и вся техническая «начинка».

Основой для всех полноприводных трансмиссий Шкод служит муфта Haldex, представленная уже в пятом поколении. В общем-то мероприятие Driving Experience и было посвящено презентации не столько автомобилей, каждый из которых нам уже довелось испытать в моноприводном исполнении, сколько именно обновленной системе 4x4.

Обновленной, потому что принципиально ничего нового в Haldex 5 не появилось. Это – результат модернизации системы предыдущего поколения, направленный на уменьшение массы и увеличение скорости работы. Если опустить все технические подробности, можно сказать, что в системе стало чуть меньше гидравлики и чуть больше электрики.

Как и прежде, полный привод у Шкод – без межосевого дифференциала, однако муфта постоянно работает с небольшим преднатяжением, всегда передавая маленький процент крутящего момента на заднюю ось. Это позволяет шкодовцам называть свои полноприводные модели Full Time – с постоянным полным приводом.

Основное преимущество системы на основе муфты Haldex не только в скорости перераспределения крутящего момента по осям, но и в том, что пробуксовка колес ведущей передней оси не является главным аргументом подключения задних.

Электроника считывает информацию с огромного количества датчиков, начиная с уровня нажатия педали газа и заканчивая поперечным и продольным ускорением. В каждый момент времени решается, необходимо ли и в каком количестве задействовать полный привод, например, для того, чтобы довернуть машину в крутом вираже, даже если под колесами сухой асфальт.

Под полным контролем электроники и межколесное распределение момента, причем как на передней, так и на задней оси. Конечно, никаких блокировок тут нет, их имитирует система ESP, при необходимости подтормаживая каждое конкретное колесо.

Самое интересное, весь этот комплекс делает автомобили Skoda в езде не столько проходимее, сколько безопаснее, что первым делом и постарались показать организаторы мероприятия. Итак, полноприводные Октавии и Супербы против своих переднеприводных «братьев».

На залитом водой полигоне предстояло поочередно пройти три испытания, пересаживаясь каждые пять минут с переднеприводной машины на полноприводную.

Первое упражнение – заход в пологий поворот, имеющий покрытие с минимальным коэффициентом трения. Фактически имитация одной из самых распространенных причин аварий на зимней трассе.

Тут всё довольно предсказуемо. При быстром, но плавном вхождении в вираж переднеприводная Octavia сразу же «уплывает» передком наружу поворота. Мгновенный сброс газа под корректирующую работу рулём довольно резко пресекается вмешательством системы ESP, которая, подтормаживая соответствующие колеса, обрубает подачу топлива до того момента, пока машина полностью не «выпрямится».

Более провокационный заезд под резкое открытие дросселя в вираже с поворотом руля в последний момент тут же отражается заносом кормы, который рефлекторно гасится контрвыпадом рулём под добавление га… а вот и нет, всё та же система стабилизации и в этот раз подбивая тормоза, душит мотор, не давая возможности вытянуть машину самостоятельно. В итоге всё та же корректировка рулём под плавное замедление и уже потом возвращение на заданный курс.

Полноприводная Octavia Combi ведёт себя реально стабильнее. Поведение на скользкой дуге обходится без резких движений со стороны и автомобиля, и водителя. Можно даже аккуратно «притопить», контролируя скоростной предел по стрекоту ESP, – вмешивается система тут корректнее, точечно подбивая соскальзывающие колеса. А даже если и перебрал со скоростью, сползает наружу полноприводная Октавия медленнее и всем «телом», позволяя водителю самому успеть выбра… нет, выбора нет: неотключаемый «ошейник» безопасности при критическом развитии сноса опять всё берет под свой контроль.

Второе и третье упражнения оказались схожи. Предлагалось пройти «змейку» сначала по горизонтальной, затем по скользкой поверхности на подъем. В обоих случаях всё обильно полито водой.

Длинный и массивный Superb даже с передним приводом на провокации поддается нехотя. Попытка «разболтать» машину на мокром асфальте происходит как в замедленной съемке – плавно начинают соскальзывать задние колеса, за которые тут же хватается ESP. А вот заезд на очень скользкий подъем с одновременным объездом препятствий машине давался тяжко, а водителю – нервно.

К стрекочущей на всем протяжении системе стабилизации с «удушающими» провалами в реакциях на акселератор добавлялись резкие «удары» по тормозам ведущих колес противобуксовочной системы. В итоге заезд в гору представлял дерганое запрыгивание с опасностью скатывания назад к подножью.

1 / 3

2 / 3

3 / 3

То ли дело Skoda Superb Combi 4x4. Да, трекшн-контроль тут тоже работает грубовато, но из-за того, что в гору передние колеса тянут, а задние тут же подталкивают, двигается машина с минимальным вмешательством ESP, то есть плавнее, равномернее и… заметно быстрее. В общем, преимущество наглядно и очевидно.

Для Skoda Yeti организаторы испытания подготовили посерьезнее – внедорожные. Хотя, надо сказать, без нашего родного грязевого месива это как-то и не бездорожье – так, геометрические препятствия.

Но для начала стендовые испытания муфты Haldex 5 на роллерной эстакаде. Вот где наглядно видно, как происходит распределение момента и скорость, с которой система определяет «буксующее» колесо. Конечно, положительный результат был предсказуем, иначе и загонять бы не стали, однако не сказать, что Йети справляется с этим упражнением на раз-два.

Уже в натуральных условиях Yeti с легкостью ползал по горам-косогорам, не доставляя никаких проблем водителю. А преодоление крутейшего спуска, когда водитель и передний пассажир буквально повисают на ремнях безопасности, и вовсе стал главным аттракционом – проверялась работа электронной системы спуска с горы. Фактически кроссовер, играя тормозами, на минимально возможной скорости съезжает сам – водителю нужно только решиться отпустить все педали.

Наиболее волнительным заданием было преодоление «змейки» внутри оврага. Yeti, конечно, порадовал и геометрической проходимостью, и довольно успешной борьбой с диагональным вывешиванием, однако при заваливании на бок неслабо пугал. Дело в том, что предельный угол бокового наклона для кроссовера - 45 градусов, после которого идёт опрокидывание, а никакого креномера в машине, конечно же, нет. Так что когда машина валилась с одного борта на другой в свободном падении, сердечко немного ёкало – вдруг взял больше 45 градусов.

Наиболее неуверенно Йети преодолевал песчаные подъемы, которые опять заставили недобрым словом высказаться о работе ESP. Как только на зыбком подъеме с подбуксовывающими колесами начинаешь вилять рулём, выбирая оптимальную траекторию подъема, электроника мгновенно воспринимает это как потерю устойчивости и тут же душит двигатель даже при включенной системе Off-road.

Статьи по теме